
Improved Analysis of Kannan’s Shortest Lattice Vector Algorithm

Abstract. The security of lattice-based cryptosystems such as NTRU, GGH and Ajtai-Dwork essen-
tially relies upon the intractability of computing a shortest non-zero lattice vector and a closest lattice
vector to a given target vector in high dimensions. The best algorithms for these tasks are due to Kan-
nan, and, though remarkably simple, their complexity estimates have not been improved since more
than twenty years. Kannan’s algorithm for solving the shortest vector problem is in particular crucial in
Schnorr’s celebrated block reduction algorithm, on which are based the best known attacks against the
lattice-based encryption schemes mentioned above. Understanding precisely Kannan’s algorithm is of
prime importance for providing meaningful key-sizes. In this paper we improve the complexity analyses
of Kannan’s algorithms and discuss the possibility of improving the underlying enumeration strategy.
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1 Introduction

A lattice L is a discrete subgroup of some R
n. Such an object can always be represented as the

set of integer linear combinations of no more than n vectors b1, . . . , bd. If these vectors are linearly
independent, we say that they are a basis of the lattice L. The most famous algorithmic problem
associated with lattices is the so-called Shortest Vector Problem (SVP). Its computational variant is
to find a non-zero lattice vector of smallest Euclidean length — this length being the minimum λ(L)
of the lattice — given a basis of the lattice. Its decisional variant is known to be NP-hard under
randomised reductions [2], even if one only asks for a vector whose length is no more than 2(log d)1−ε

times the length of a shortest vector [12] (for any ε > 0).

SVP is of prime importance in cryptography since a now quite large family of public-key cryp-
tosystems rely more or less on it. The Ajtai-Dwork cryptosystem [4] relies on dc-SVP for some c > 0,
where f(d)-SVP is the problem of finding the shortest non-zero vector in the lattice L, knowing
that it is unique in the sense that any vector that is of length less than f(d) · λ(L) is parallel to
it. The GGH cryptosystem [11] relies on special instances of the Closest Vector Problem (CVP),
a non-homogeneous version of SVP. Finally, one strongly suspects that in NTRU [15] – the only
realistic lattice-based cryptosystem nowadays, the private key can be read on the coordinates of a
shortest vector of the Coppersmith-Shamir lattice [8]. The best known generic attacks on these en-
cryption schemes are based on solving SVP. It is therefore highly important to know precisely what
complexity is achievable, both in theory and practice, in particular to select meaningful key-sizes.

In practice, when one wants to obtain good approximations of the lattice minimum, one uses
Schnorr’s block-based algorithms [24, 25]. These algorithms use internally either Kannan’s algo-
rithm, or the lattice point enumeration procedure on which it relies. This is by far the most time-
consuming part of these algorithms. In fact, the corresponding routine in Shoup’s NTL [26] relies on
a much slower algorithm described in [25] (2O(d2) instead of dO(d)). The problem is that the enumer-
ation is performed on a basis which is not sufficiently pre-processed (only LLL-reduced). It works
well in low dimension, but it can be checked that it is sub-optimal even in moderate dimensions
(say 40): the efficiency gap between enumerating from an LLL-reduced basis and from an HKZ-
reduced basis shows that there is much room for improving the strategy of [25] by pre-processing
the basis before starting the enumeration.

Two main algorithms are known for solving SVP. The first one, which is deterministic, is based
on the exhaustive enumeration of lattice points within a small convex set. It is known as Fincke-
Pohst’s enumeration algorithm [9] in the algorithmic number theory community. In the cryptog-
raphy community, it is known as Kannan’s algorithm [16], which is quite similar to the one of



Fincke and Pohst. There are two main differences between both: firstly, in Kannan’s algorithm,
a long pre-computation on the basis is performed before starting the enumeration process; sec-
ondly, Kannan enumerates points in a hyper-parallelepiped whereas Fincke and Pohst do it in an
hyper-ellipsoid contained in Kannan’s hyper-parallelepiped – though it may be that Kannan chose
the hyper-parallelepiped in order to simplify the complexity analysis. Kannan obtained a dd+o(d)

complexity bound (in all the complexity bounds mentioned in the introduction, there is an im-
plicit multiplicative factor that is polynomial in the bit-size of the input). In 1985, Helfrich [13]
refined Kannan’s analysis, and obtained a dd/2+o(d) complexity bound. On the other hand, Ajtai,
Kumar and Sivakumar [5] described a probabilistic algorithm of complexity 2O(d). The best expo-
nent constant is likely to be small. Nevertheless, unless a breakthrough modification is introduced,
this algorithm is bound to remain impractical even in moderate dimension since it also requires
an exponential space (at least 2d in dimension d). On the contrary, the deterministic algorithm of
Kannan requires a polynomial space.

Our main result is to lower Helfrich’s complexity bound on Kannan’s algorithm, from d
d
2
+o(d) ≈

d0.5·d to d
d
2e

+o(d) ≈ d0.184·d+o(d). This may explain why Kannan’s algorithm is tractable even in mod-
erate dimensions (higher than 40). Our analysis can also be adapted to Kannan’s algorithm that
solves the Closest Vector Problem: it decreases Helfrich’s complexity bound from dd+o(d) to dd/2+o(d).
The complexity improvement on Kannan’s SVP algorithm directly provides better worst-case effi-
ciency/quality trade-offs in Schnorr’s block-based algorithms [24, 25, 10].

It must be noted that if one follows our analysis step by step, the derived o(d) may be large
when evaluated for some practical d: the constants hidden in the “o(d)” are improvable (for some of
them it may be easy, for others it is probably much harder). No effort was made to improve them,
and we believe that it would have complicated the proof with irrelevant details. In fact, most of
our analysis consists of estimating the number of lattice points within convex bodies, and showing
that the approximation by the volume is valid. By replacing this discretisation by heuristic volume
estimates, one obtains very small heuristic hidden constants.

Our complexity improvement is based on a fairly simple idea. It is equivalent to generate all
lattice points within a ball and to generate all integer points within an ellipsoid (consider the
ellipsoid defined by the quadratic form naturally associated with the given lattice basis). Fincke and
Pohst noticed that it was more efficient to work with the ellipsoid than to consider a parallelepiped
containing it: indeed, when the dimension increases, the ratio of the two volumes shrinks to 0 very
quickly. Amazingly, in his analysis, instead of considering the ellipsoid, Kannan bounds the volume
of the parallelepiped. Using rather involved technicalities, we bound the volume of the ellipsoid
(in fact, the number of integer points within it). Some parts of our proof could be of independent
interest. For example, we show that for any Hermite-Korkine-Zolotarev-reduced (HKZ-reduced for
short) lattice basis (b1, . . . , bd), and any subset I of {1, . . . , d}, we have:

‖b1‖|I|
∏

i∈I ‖b∗i ‖
≤
√

d
|I|
“

1+log d
|I|

”

,

where (b∗i )i≤d is the Gram-Schmidt orthogonalisation of the basis (b1, . . . , bd). This inequality gen-
eralises the results of [24] on the quality of HKZ-reduced bases.

Road-Map of the Paper. In Section 2, we recall some basic definitions and properties on lattice
reduction. Section 3 is devoted to the description of Kannan’s algorithm and Section 4 to its
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complexity analysis. In Section 5, we give without much detail our sibling result on CVP, as well
as very direct consequences of our result for Schnorr’s block-based algorithms.

Notation. All logarithms are natural logarithms, i.e., log(e) = 1. Let ‖·‖ and 〈·, ·〉 be the Euclidean
norm and inner product of R

n. Bold variables are vectors. We use the bit complexity model. The
notation P(n1, . . . , ni) means (n1 · . . . ·ni)

c for some constant c > 0. If x is real, we denote by bxe a
closest integer to it (with any convention for making it unique) and we define the centred fractional
part {x} as x − bxe. We use the notation frac(x) to denote the classical fractional part of x, i.e.,
the quantity x− bxc. Finally, for any integers a and b, we define Ja, bK as [a, b] ∩ Z.

2 Background on Lattice Reduction

We assume the reader is familiar with the geometry of numbers and its algorithmic aspects. Com-
plete introductions to Euclidean lattices algorithmic problems can be found in [21] and [23].

Gram-Schmidt orthogonalisation. Let b1, . . . , bd be linearly independent vectors. Their Gram-

Schmidt orthogonalisation (GSO) b
∗
1, . . . , b

∗
d is the orthogonal family defined recursively as follows:

the vector b
∗
i is the component of the vector bi which is orthogonal to the linear span of the

vectors b1, . . . , bi−1. We have b
∗
i = bi −

∑i−1
j=1 µi,jb

∗
j where µi,j =

〈bi,b
∗
j 〉

‖b∗j‖2
. For i ≤ d we let µi,i = 1.

Notice that the GSO family depends on the order of the vectors. If the bi’s are integer vectors,
the b

∗
i ’s and the µi,j ’s are rational.

Lattice volume. The volume of a lattice L is defined as det(L) =
∏d

i=1 ‖b∗i ‖, where the bi’s are
any basis of L. It does not depend on the choice of the basis of L and can be interpreted as the
geometric volume of the parallelepiped naturally spanned by the basis vectors.

Minimum and SVP. Another important lattice invariant is the minimum. The minimum λ(L)
is the radius of the smallest closed ball centred at the origin containing at least one non-zero
lattice vector. The most famous lattice problem is the shortest vector problem. We give here its
computational variant: given a basis of a lattice L, find a lattice vector whose norm is exactly λ(L).

CVP. We give here the computational variant of the closest vector problem: given a basis of a
lattice L and a target vector in the real span of L, find a closest vector of L to the target vector.

The volume and the minimum of a lattice cannot behave independently. Hermite [14] was the

first to bound the ratio λ(L)

(det L)1/d as a function of the dimension only, but his bound was later on

greatly improved by Minkowski in his Geometrie der Zahlen [22]. Hermite’s constant γd is defined

as the supremum over d dimensional lattices L of the ratio λ(L)2

(det L)2/d . In particular, we have γd ≤ d+4
4

(see [19]), which we will refer to as Minkowski’s theorem. Unfortunately, the proof of Minkowski’s
theorem is not constructive. In practice, one often starts with a lattice basis, and tries to improve
its quality. This process is called lattice reduction. The most usual ones are probably the LLL and
HKZ reductions. Before defining them, we need the concept of size-reduction.

Size-reduction. A basis (b1, . . . , bd) is size-reduced if its GSO family satisfies |µi,j | ≤ 1/2 for
all 1 ≤ j < i ≤ d.

HKZ-reduction. A basis (b1, . . . , bd) is said to be Hermite-Korkine-Zolotarev-reduced if it is size-
reduced, the vector b1 reaches the first lattice minimum, and the projections of the (bi)i≥2’s or-
thogonally to the vector b1 are an HKZ-reduced basis. The following immediately follows from this
definition and Minkowski’s theorem. It is the sole property on HKZ-reduced bases that we will use:
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Lemma 1. If (b1, . . . , bd) is HKZ-reduced, then for any i ≤ d, we have:

‖b∗i ‖ ≤
√

d− i + 5

4
·





∏

j≥i

‖b∗j‖





1
d−i+1

.

HKZ-reduction is very strong, but very expensive to compute. On the contrary, LLL-reduction
is fairly cheap, but an LLL-reduced basis is of much lower quality.

LLL-reduction [18]. A basis (b1, . . . , bd) is LLL-reduced if it is size-reduced and if its GSO satisfies

the (d− 1) Lovász conditions: 3
4 ·
∥

∥b
∗
κ−1

∥

∥

2 ≤
∥

∥b
∗
κ + µκ,κ−1b

∗
κ−1

∥

∥

2
. The LLL-reduction implies that

the norms ‖b∗1‖, . . . , ‖b∗d‖ of the GSO vectors never drop too fast: intuitively, the vectors are not far
from being orthogonal. Such bases have useful properties, like providing exponential approximations
to SVP and CVP. In particular, their first vector is relatively short. More precisely:

Theorem 1 ([18]). Let (b1, . . . , bd) be an LLL-reduced basis of a lattice L. Then we have ‖b1‖ ≤
2

d−1
4 · (det L)1/d. Moreover, there exists an algorithm that takes as input any set of integer vectors

and outputs in deterministic polynomial time an LLL-reduced basis of the lattice they span.

In the following, we will also need the fact that if the set of vectors given as input to the LLL
algorithm starts with a shortest non-zero lattice vector, then this vector is not changed during the
execution of the algorithm: the output basis starts with the same vector.

3 Kannan’s SVP Algorithm

Kannan’s SVP algorithm [16] relies on multiple calls to the so-called short lattice points enumeration
procedure. The latter aims at computing all vectors of a given lattice that are in the hyper-sphere
centred in 0 and some prescribed radius. Variants of the enumeration procedure are described in [1].

3.1 Short Lattice Points Enumeration

Let (b1, . . . , bd) be a basis of a lattice L ⊂ Z
n and let A ∈ Z. Our goal is to find all lattice

vectors
∑d

i=1 xibi of squared Euclidean norm ≤ A. The enumeration works as follows. Suppose
that ‖∑i xibi‖2 ≤ A for some integers xi’s. Then, by considering the components of the vec-
tor

∑

i xibi on each of the b
∗
i ’s, we obtain:

(xd)
2 · ‖b∗d‖2 ≤ A,

(xd−1 + µd,d−1xd)
2 · ‖b∗d−1‖2 ≤ A− (xd)

2 · ‖b∗d‖2,
. . .



xi +
d
∑

j=i+1

µj,ixj





2

· ‖b∗i ‖2 ≤ A−
d
∑

j=i+1

lj ,

. . .


x1 +
d
∑

j=2

µj,ixj





2

· ‖b1‖2 ≤ A−
d
∑

j=2

lj ,
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where li = (xi +
∑

j>i xjµj,i)
2 · ‖b∗i ‖2. The algorithm of Figure 1 mimics the equations above.

It is easy to see that the bit-cost of this algorithm is bounded by the number of loop iterations
times a polynomial in the bit-size of the input. We will prove that if the input basis (b1, . . . , bd) is

sufficiently reduced and if A = ‖b1‖2, then the number of loop iterations is d
d
2e

+o(d).

Input: An integral lattice basis (b1, . . . , bd), a bound A ∈ Z.
Output: All vectors in L(b1, . . . , bd) that are of squared norm ≤ A.
1. Compute the rational µi,j ’s and ‖b∗

i ‖
2’s.

2. x:=0, l:=0, S:=∅.
3. i:=1. While i ≤ d, do
4. li:=(xi +

P

j>i xjµj,i)
2‖b∗

i ‖
2.

5. If i = 1 and
Pd

j=1 lj ≤ A, then S:=S ∪ {x}, x1:=x1 + 1.

6. If i 6= 1 and
P

j≥i lj ≤ A, then

7. i:=i − 1, xi:=

‰

−
P

j>i(xjµj,i) −

r

A−
P

j>i lj

‖b∗

i
‖2

ı

.

8. If
P

j≥i lj > A, then i:=i + 1, xi:=xi + 1.

9. Return S.

Fig. 1. The Enumeration Algorithm.

3.2 Solving SVP

To solve SVP, Kannan provides an algorithm that computes HKZ-reduced bases, see Figure 2. The
cost of the enumeration procedure dominates the overall cost and mostly depends on the quality
(i.e., the slow decrease of the ‖b∗i ‖’s) of the input basis. The main idea of Kannan’s algorithm is
thus to spend a lot of time pre-computing a basis of excellent quality before calling the enumeration
procedure. More precisely, it pre-computes a basis which satisfies the following definition:

Definition 1 (Quasi-HKZ-Reduction). A basis (b1, . . . , bd) is quasi-HKZ-reduced if it is size-

reduced, if ‖b∗2‖ ≥ ‖b∗1‖/2 and if once projected orthogonally to b1, the other bi’s are HKZ-reduced.

Input: An integer lattice basis (b1, . . . , bd).
Output: An HKZ-reduced basis of the same lattice.
1. LLL-reduce the basis (b1, . . . , bd).
2. Do
3. Compute the projections (b′

i)i≥2 of the bi’s orthogonally to b1.
4. HKZ-reduce the (d − 1)-dimensional basis (b′

2, . . . , b
′
d).

5. Extend the obtained (b′
i)i≥2’s into vectors of L by adding to them rational

multiples of b1, in such a way that we have |µi,1| ≤ 1/2 for any i > 1.
6. While (b1, . . . , bd) is not quasi-HKZ-reduced.
7. Call the enumeration procedure to find all lattice vectors of length ≤ ‖b1‖.

Let b0 be a shortest non-zero vector among them.
8. (b1, . . . , bd):=LLL(b0, . . . , bd).
9. Compute the projections (b′

i)i≥2’s of the bi’s orthogonally to the vector b1.
10. HKZ-reduce the (d − 1)-dimensional basis (b′

2, . . . , b
′
d).

11. Extend the obtained (b′
i)i≥2’s into vectors of L by adding to them rational

multiples of b1, in such a way that we have |µi,1| ≤ 1/2 for any i > 1.

Fig. 2. Kannan’s SVP Algorithm.

Several comments need to be made on the algorithm of Figure 2. Steps 4 and 10 are recursive
calls. Nevertheless, one should be careful because the b

′
i’s are rational vectors, whereas the input of
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the algorithm must be integral. One must therefore scale the vectors by a common factor. Steps 5
and 11 can be performed for example by expressing the reduced basis vectors as integer linear
combinations of the initial ones, using these coefficients to recover lattice vectors and subtracting
a correct multiple of the vector b1. In Step 7, it is alway possible to choose such a vector b0, since
this enumeration always provides non-zero solutions (the vector b1 is a one of them).

3.3 Cost of Kannan’s SVP Solver

We recall briefly Helfrich’s complexity analysis [13] of Kannan’s algorithm and explain our com-
plexity improvement. Let C(d, n, B) be the worst-case complexity of the algorithm of Figure 2 when
given as input a d-dimensional basis which is embedded in Z

n and whose coefficients are smaller
than B in absolute value. Kannan [16] and Helfrich [13] show the following properties:

– It computes an HKZ-reduced basis of the lattice spanned by the input vectors.
– All arithmetic operations performed during the execution are of cost P(d, n, log B). This implies

that the cost C(d, n, B) can be bounded by C(d) · P(log B, n) for some function C(d).
– The number of iterations of the loop of Steps 2–6 is bounded by O(1) + log d.
– The cost of the call to the enumeration procedure at Step 7 is bounded by P(log B, n) ·dd/2+o(d).

From these properties and those of the LLL algorithm as recalled in the previous section, it is
easy to obtain the following equation:

C(d) ≤ (O(1) + log d)(C(d− 1) + P(d)) + P(d) + d
d
2
+o(d).

One can then derive the bound C(d, B, n) ≤ P(log B, n) · d d
2
+o(d).

The main result of this paper is to improve this complexity upper bound to P(log B, n)·d d
2e

+o(d).
In fact, we show the following:

Theorem 2. Given as inputs a quasi-HKZ-reduced basis (b1, . . . , bd) and A = ‖b1‖2, the number

of loop iterations during the execution of the enumeration algorithm as described in Figure 1 is

bounded by P(log B) · 2O(d) · d d
2e , where B = maxi ‖bi‖. As a consequence, given a d-dimensional

basis of n-dimensional vectors whose entries are integers with absolute values ≤ B, one can compute

an HKZ-reduced basis of the lattice they span in deterministic time P(log B, n) · d d
2e

+o(d).

4 Complexity of the Enumeration Procedure

This section is devoted to proving Theorem 2.

4.1 From the Enumeration Procedure to Integer Points in Hyper-ellipsoids

In this subsection, we do not assume anything on the input basis (b1, . . . , bd) and on the input
bound A. Up to some polynomial in d and log B, the complexity of the enumeration procedure of
Figure 1 is the number of loop iterations. This number of iterations is itself bounded by:

d
∑

i=1

∣

∣

∣

∣

∣

∣







(xi, . . . , xd) ∈ Z
d−i+1, ‖

d
∑

j=i

xjb
(i)
j ‖2 ≤ A







∣

∣

∣

∣

∣

∣

,
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where b
(i)
j = bj −

∑

k<i µj,kb
∗
k is the vector bj once projected orthogonally to the linear span of

the vectors b1, . . . , bi−1. Indeed, the truncated coordinate (xi, . . . , xd) is either a valid one, i.e.,

we have |∑d
j=i xjb

(i)
j ‖2 ≤ A, or (xi − 1, . . . , xd) is a valid one, or (xi+1, . . . , xd) is a valid one. In

fact, if (xi, . . . , xd) is a valid truncated coordinate, only two non-valid ones related to that one can
possibly be considered during the execution of the algorithm: (xi + 1, . . . , xd) and (xi−1, xi . . . , xd)
for at most one integer xi−1.

Consider the quantity
∣

∣

∣

{

(xi, . . . , xd) ∈ Z
d−i+1, ‖∑d

j=i xjb
(i)
j ‖2 ≤ A

}∣

∣

∣
. By applying the change

of variable xj ← xj −
⌊

∑

k>j µk,jxk

⌉

, we obtain:

∑

i≤d

|{(xi, . . . , xd) ∈ Z
d−i+1 , ‖

∑

j≥i

xjb
(i)
j ‖2 ≤ A}|

≤
∑

i≤d

|{(xi, . . . , xd) ∈ Z
d−i+1,

∑

j≥i

(xj +
∑

k>j

µk,jxk)
2 · ‖b∗j‖2 ≤ A}|

≤
∑

i≤d

|{(xi, . . . , xd) ∈ Z
d−i+1,

∑

j≥i

(xj + {
∑

k>j

µk,jxk })2 · ‖b∗j‖2 ≤ A}|.

If x is an integer and ε ∈ [−1/2, 1/2], then we have the relation (x + ε)2 ≥ x2/4. If x = 0,
this is obvious, and otherwise we use the inequality |ε| ≤ 1/2 ≤ |x|/2. As a consequence, up to a
polynomial factor, the complexity of the enumeration is bounded by:

∑

i≤d

∣

∣

∣

∣

∣

∣







(xi, . . . , xd) ∈ Z
d−i+1,

∑

j≥i

x2
j · ‖b∗j‖2 ≤ 4A







∣

∣

∣

∣

∣

∣

.

For any i ≤ d, we define the ellipsoid Ei =
{

(yi, . . . , yd) ∈ R
d−i+1,

∑

j≥i y
2
j · ‖b∗j‖2 ≤ 4A

}

, as

well as the quantity Ni = |Ei ∩ Z
d−i+1|. We want to bound the sum of the Ni’s. We now fix some

index i. The following sequence of relations is inspired from [20, Lemma 1].

Ni =
∑

(xi,...,xd)∈Zd−i+1

1Ei(xi, . . . , xd) ≤ exp



d



1−
∑

j≥i

x2
j

‖b∗j‖2
4A









≤ ed ·
∏

j≥i

∑

x∈Z

exp

(

−x2 d‖b∗i ‖2
4A

)

= ed ·
∏

j≥i

Θ

(

d‖b∗j‖2
4A

)

,

where Θ(t) =
∑

x∈Z
exp(−tx2) is defined for t > 0. Notice that Θ(t) = 1 + 2

∑

x≥1 exp(−tx2) ≤
1 + 2

∫∞
0 exp(−tx2)dx = 1 +

√

π
t . Hence Θ(t) ≤ 1+

√
π√

t
for t ≤ 1 and Θ(t) ≤ 1 +

√
π for t ≥ 1. As a

consequence, we have:

Ni ≤ (4e(1 +
√

π))d ·
∏

j≥i

max

(

1,

√
A√

d‖b∗i ‖

)

. (1)

One thus concludes that the cost of the enumeration procedure is bounded by:

P(n, log A, log B) · 2O(d) · max
I⊂J1,dK

(

(
√

A)|I|

(
√

d)|I|
∏

i∈I ‖b∗i ‖

)

.
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4.2 The Case of Quasi-HKZ-Reduced Bases

We know suppose that A = ‖b1‖2 and that the input basis (b1, . . . , bd) is quasi-HKZ-reduced. Our
first step is to strengthen the quasi-HKZ-reducedness hypothesis to an HKZ-reducedness hypothesis.
Let I ⊂ J1, dK. If 1 /∈ I, then, because of the quasi-HKZ-reducedness assumption:

‖b1‖|I|
(
√

d)|I|
∏

i∈I ‖b∗i ‖
≤ 2d ‖b∗2‖|I|

(
√

d)|I|
∏

i∈I ‖b∗i ‖
.

Otherwise if 1 ∈ I, then we have, by removing ‖b∗1‖ from the product
∏

i∈I−{1} ‖b∗i ‖:

‖b1‖|I|
(
√

d)|I|
∏

i∈I ‖b∗i ‖
≤ 2d ‖b∗2‖|I|−1

(
√

d)|I|−1
∏

i∈I−{1} ‖b∗i ‖
.

As a consequence, in order to obtain Theorem 2, it suffices to prove the following:

Theorem 3. Let b1, . . . , bd be an HKZ-reduced basis. Let I ⊂ J1, dK. Then,

‖b1‖|I|
∏

i∈I ‖b∗i ‖
≤ (
√

d)
|I|
“

1+log d
|I|

”

≤ (
√

d)
d
e
+|I|.

4.3 A Property on the Geometry of HKZ-Reduced Bases

In this section, we prove Theorem 3, which is the last missing part to obtain the announced result.
Some parts of the proof are fairly technical and have been postponed to the appendix (this is the
case for the proofs of Lemmata 2–5). As a guide, the reader should consider the typical case where
(bi)1≤i≤d is an HKZ-reduced basis for which (‖b∗i ‖)i is a non-increasing sequence. In that case,
the shape of the interval I that is provided by Equation(1) is much simpler: it is an interval Ji, dK
starting at some index i. Lemmata 4 and 2 (which should thus be considered as the core of the
proof) and the fact that x log x ≥ −1/e for x ∈ [0, 1] are sufficient to deal with such simple intervals,
and thus to provide the result.

The difficulties arise when the shape of the set I under study becomes more complicated. Though
the proof is technically quite involved, the strategy itself can be summed up in a few words. We
split our HKZ-reduced basis into blocks (defined by the expression of I as a union of intervals), i.e.,
groups of consecutive vectors bi, bi+1, . . . , bj−1 such that i, . . . , k − 1 6∈ I and k, . . . , j − 1 ∈ I. The
former vectors will be the “large ones”, and the latter the “small ones”. Over each block, Lemma 4
relates the average size of the small vectors to the average size of the whole block. We consider the
blocks by decreasing indices (in Lemma 6), and use an amortised analysis to combine finely the
local behaviours on blocks to obtain a global bound. This recombination is extremely tight, and
in order to get the desired bound we use “parts of vectors” (non-integral powers of them). This is
why we need to introduce the π̃ (in Definition 3). A final convexity argument provided by Lemma 3
gives the result.

In the sequel, (bi)1≤i≤d is an HKZ-reduced basis of a lattice L of dimension d ≥ 2.

Definition 2. For any I ⊂ J1, dK, we define πI =
(
∏

i∈I ‖b∗i ‖
) 1

|I| . Moreover, if k ∈ J1, d− 1K, we

define Γd(k) =
∏d−1

i=d−k γ
1
2i
i+1.

8



For technical purposes in the proof of Lemma 6, we also need the following definition.

Definition 3. If 1 ≤ a < b ≤ d, where a is real and b is an integer, we define:

π̃[a,b] =



‖b∗bac‖1−a+bac ·
b
∏

i=bac+1

‖b∗i ‖





1
b+1−a

=
(

πJbac,bK
)

(b+1−bac)(1−a+bac)
b+1−a ·

(

πJbac+1,bK

)
(b−bac)(a−bac)

b+1−a .

Note that Definition 3 naturally extends Definition 2, since π̃[a,b] = πJa,bK when a is an integer.
We need estimates on the order of magnitude of Γ , and a technical lemma allowing us to

recombine such estimates. Basically, the following lemma is a precise version of the identity:

log Γd(k) ≈
∫ d

x=d−k

x

2
log x dx ≈ log2(d)− log2(d− k)

4
<∼

log d

2
log

d

d− k
.

Lemma 2. For all 1 ≤ k < d, we have Γd(k) ≤
√

d
log d

d−k .

The following lemma derives from the convexity of the function x 7→ x log x.

Lemma 3. Let ∆ ≥ 1, and define F∆(k, d) = ∆−k log k
d . We have, for all integer t, for all inte-

gers k1, . . . , kt and d1, . . . , dt such that 1 ≤ ki < di for all i ≤ t,

∏

i≤t

F∆(ki, di) ≤ F∆





∑

i≤t

ki,
∑

i≤t

di



 .

We now give an “averaged” version of [24, Lemma 4]. For completeness, we give its proof in
appendix. This provides the result claimed in Theorem 3 for any interval I = Ji, jK, for any i ≤ j ≤ d.

Lemma 4. For all k ∈ J0, d− 1K, we have

πJ1,kK ≤ (Γd(k))d/k · πJk+1,dK and πJk+1,dK ≥ (Γd(k))−1 · (det L)1/d ≥
√

d
log d−k

d (det L)1/d.

The following lemma extends Lemma 4 to the case where k is not necessarily an integer. Its
proof is conceptually simple, but involves rather heavy elementary calculus. It would be simpler to
obtain it with a relaxation factor. The result is nevertheless worth the effort since the shape of the
bound is extremely tractable in the sequel.

Lemma 5. If 1 ≤ x1 < x2 < d are real and in [1, d), then π̃[x2,d] ≥
√

d
log

d−x2
d−x1 · π̃[x1,d].

We prove Theorem 3 by induction on the number of intervals occurring in the expression of the
set I as a union of intervals. The following lemma is the induction step. This is a recombination step,
where we join one block (between the indices 1 and v, the “small vectors” being those between u+1
and v) to one or more already considered blocks on its right. An important point is to ensure that
the densities δi defined below actually decrease.

Lemma 6. Let (b1, . . . , bd) be an HKZ-reduced basis. Let v ∈ J2, dK, I ⊂ Jv + 1, dK and u ∈ J1, vK.
Assume that:

π
|I|
I ≥

∏

i<t

(

π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

,

9



where Ii = I ∩ Jαi + 1, αi+1K , δi = |Ii|
αi+1−αi

is the density of I in Jαi + 1, αi+1K, and the integers t
and αi’s, and the densities δi satisfy t ≥ 1, v = α1 < α2 < . . . < αt ≤ d and 1 ≥ δ1 > . . . > δt−1 > 0.

Then, we have

π
|I′|
I′ ≥

∏

i<t′

(

π
|I′i|
Jα′

i+1,α′
i+1K ·

√
d
|I′i| log δ′i

)

,

where I ′ = Ju + 1, vK∪ I, I ′i = I ′ ∩
q
α′

i + 1, α′
i+1

y
, δ′i =

|I′i|
α′

i+1−α′
i

and the integers t′ and α′
i’s, and the

densities δ′i satisfy t′ ≥ 1, 0 = α′
1 < α′

2 < . . . < α′
t′ ≤ d and 1 ≥ δ′1 > . . . > δ′t′−1 > 0.

Proof. Assume first that v−u
v ≥ δ1, Then, thanks to Lemma 4,

π
|I′|
I′ = πv−u

Ju+1,vK · π
|I|
I ≥ πv−u

J1,vK ·
√

d
(v−u) v−u

v · π|I|
I ,

we are done with t′ = t + 1, α′
1 = 1, α′

k = αk−1, δ′1 = v−u
v , δ′k = δk−1.

Otherwise, we let λ1 > 0 be such that v−u
v−λ1

= δ1 = v−u+|I1|
α2−λ1

, where the first equality defines λ1

and the second one follows. Note that this implies:

π̃v−u
[λ1,v] · π

|I1|
Jv+1,α2K = π̃

v−u+|I1|
[λ1,α2] .

Then, we have, by using Lemma 5,

π
|I′|
I′ = πv−u

Ju+1,vK · π
|I|
I

≥
(

π̃v−u
[λ1,v] ·

√
d

(v−u) log v−u
v−λ1

)

·
∏

i<t

(

π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

≥
(

π̃v−u
[λ1,v] · π

|I1|
Jv+1,α2K ·

√
d

(v−u) log v−u
v−λ1

+|I1|·log δ1

)

·
t−1
∏

i=2

(

π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

≥
(

π̃
v−u+|I1|
[λ1,α2] ·

√
d

(v−u+|I1|) log
v−u+|I1|

α2−λ1

)

·
t−1
∏

i=2

(

π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

,

If v−u+|I1|
α2

> |I2|
α3−α2

, we conclude as in the first step, putting t′ = t, α′
1 = 1, α′

k = αk for k ≥ 2,
δ′1 = (v − u + |I1|)/α2, δ′k = δk for k ≥ 2. If this is not the case, we let λ2 be such that:

v − u + |I1|
α2 − λ2

= δ2 =
v − u + |I ∩ Jα1 + 1, α3K|

α3 − λ2
.

Notice that since δ1 = v−u+|I1|
α2−λ1

> δ2, we have λ2 < λ1. A similar sequence of inequalities, using

Lemma 5 to relate π̃[λ1,α2] to π̃[λ2,α2], leads to the following lower bound on π
|I′|
I′ :

(

π̃
v−u+|I∩Jα1+1,α3K|
[λ2,α3] ·

√
d

(v−u+|I∩Jα1+1,α3K|) log
v−u+|I∩Jα1+1,α3K|

α3−λ2

)

·
t−1
∏

i=3

(

π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

We can proceed in the same way, constructing λ2 > λ3 > . . .. Suppose first that the construction
stops at some point. We have:

π
|I′|
I′ ≥

(

π
|I′∩J1,αk+1K|
J1,αk+1K ·

√
d
|I′∩J1,αk+1K| log |I′∩J1,αk+1K|

αk+1

)

·
t−1
∏

i=k+1

(

π
|Ii|
Jαi+1,αi+1K

√
d
|Ii| log δi

)

.
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We can then conclude, by putting t′ = t − k + 1, α′
1 = 1, α′

j = αj+k−1 for j > 1, δ′1 = |I ′ ∩
J1, αk+1K |/αk+1, δ′j = δj+k−1 for j > 1.

Otherwise, we end up with:

π
|I′|
I′ ≥ π̃

|I′|
[λt−2,αt−1] ·

√
d
|I′| log |I′∩J1,αt−1K|

αt−1−λt−2 ,

to which we can apply Lemma 5 to obtain π
|I′|
I′ ≥ π

|I′|
J1,αt−1K ·

√
d
|I′| log |I′∩J1,αt−1K|

αt−1 , which is again in

the desired form, with t′ = 2, α′
1 = 1, α′

2 = αt−1, δ′1 = |I′∩J1,αt−1K|
αt−1

2

Theorem 3 now follows from successive applications of Lemma 6, as follows:

Proof of Theorem 3. Lemma 6 gives us, by induction on the size of the considered set I, that
for all I ⊂ J1, dK, we have:

π
|I|
I ≥

∏

i<t

(

π
|Ii|
Jαi+1,αi+1K ·

√
d
|Ii| log δi

)

,

where Ii = I∩Jαi + 1, αi+1K, and the integers t and αi’s, and the densities δi = |Ii|
αi+1−αi

satisfy t ≥ 1,

0 = α1 < α2 < . . . < αt ≤ d and 1 ≥ δ1 > . . . > δt−1 > 0. By using Lemma 3 with ∆:=
√

d, ki:= |Ii|
and di:=αi+1 − αi, we immediately obtain:

π
|I|
I ≥

(√
d
|I| log |I|

αt−α1

)

·
(

∏

i<t

π
|Ii|
Jαi+1,αi+1K

)

.

For convenience, we define δt = 0. Because of the definition of the αi’s, we have:

∏

i<t

π
|Ii|
Jαi+1,αi+1K =

∏

i<t

(

π
αi+1−αi

Jαi+1,αi+1K

)δi

=
∏

i<t

∏

i≤j<t

(

π
αi+1−αi

Jαi+1,αi+1K

)δj−δj+1

=
∏

j<t





∏

i≤j

π
αi+1−αi

Jαi+1,αi+1K





δj−δj+1

=
∏

j<t

(

π
αj+1

J1,αj+1K

)δj−δj+1

.

By using t− 1 times Minkowski’s theorem, we obtain that:

π
|I|
I ≥

√
d
|I| log |I|

d · (‖b1‖/
√

d)
P

j<t αj+1(δj−δj+1)

≥
√

d
|I| log |I|

d · (‖b1‖/
√

d)
P

j<t(αj+1−αj)δj

≥
√

d
|I|
“

log
|I|
d
−1

”

· ‖b1‖|I|.

The final inequality of the theorem is just the fact that x 7→ x log(d/x) is maximal for x = d/e.
2

Note that if max I < d, we can apply the result to the HKZ-reduced basis (b1, . . . , bmax I). In
the case where I = {i}, we recover the result of [24] that

‖b∗i ‖ ≥ (
√

i)− log i−1 · ‖b1‖. (2)

11



Still, our result is significantly better to what would have been obtained by combining several
relations of the type of Equation (2), when |I| grows large. For instance, for a worst case of our
analysis where I is roughly the interval [d(1 − 1/e), d], this strategy would yield a lower bound of

the form ‖b1‖d/e ·
√

d
(d/e) log d

, which is worse than Helfrich’s analysis.

5 CVP and Other Related Problems

In this section, we describe what can be obtained by adapting our technique to the Closest Vector
Problem and other problems related to strong lattice reduction. We only describe the proofs at a
high level, since they are relatively straightforward.

In CVP, we are given a basis (b1, . . . , bd) and a target vector t, and we look for a lattice vector
that is closest to t. The first step of Kannan’s CVP algorithm is to HKZ-reduce the bi’s. Then
one adapts the enumeration algorithm of Figure 1 for CVP. For the sake of simplicity, we assume
that ‖b∗1‖ is the largest of the ‖b∗i ‖’s (we refer to Kannan’s proof [16] for the general case). By using
Babai’s nearest hyperplane algorithm [6], we see that there is a lattice vector b at distance less
than

√
d · ‖b1‖ of the target vector t. As a consequence, if we take A = d · ‖b1‖ in the adaptation of

the enumeration procedure, we are sure to find a solution. The analysis then reduces (at the level

of Equation (1)) to bound the ratio ‖b1‖d
Q

i≤d ‖b∗i ‖
, which can be done with Minkowski’s theorem.

Theorem 4. Given a basis (b1, . . . , bd) and a target vector t, all of them in R
n and with integer

coordinates whose absolute values are smaller than some B, one can find all vectors in the lattice

spanned by the bi’s that are closest to t in deterministic time P(log B, n) · dd/2+o(d).

The best deterministic complexity bound previously known for this problem was P(log B, n) ·
dd+o(d) (see [13, 7]). Our result can also be adapted to enumerating all vectors of a lattice that are
of length below a prescribed bound, which is in particular useful in the context of computing lattice
theta series.

Another important consequence of our analysis is a significant worst-case bound improvement
of Schnorr’s block-based strategy [24] to compute relatively short vectors. More precisely, if we take
the bounds given in [10] for the quality of Schnorr’s semi-2k reduction and for the transference
reduction, we obtain the table of Figure 3. Each entry of the table gives the upper bound of the
quantity ‖b1‖

(det L)1/d which is reachable for a computational effort of 2t, for t growing to infinity. To

sum up, the multiplicative exponent constant is divided by e ≈ 2.7. The table upper bounds can
be adapted to the quantity ‖b1‖

λ1(L) by squaring them.

Semi-2k reduction Transference reduction

Using Helfrich’s complexity bound <
∼ 2

log 2
2

d log2 t
t ≈ 20.347 d log2 t

t <
∼ 2

1
4

d log2 t
t ≈ 20.250 d log2 t

t

Using the improved complexity bound <
∼ 2

log 2
2e

d log2 t
t ≈ 20.128 d log2 t

t <
∼ 2

1
4e

d log2 t
t ≈ 20.092 d log2 t

t

Fig. 3. Worst-case bounds for block-based reduction algorithms.

Let us finish by mentioning that work under progress seems to show, by using a technique due
to Ajtai [3], that our analyses are sharp, in the sense that for all ε > 0, we can build HKZ-reduced

bases for which the number of steps of Kannan’s algorithm would be of the order of dd( 1
2e

−ε).
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Proof of Lemma 2

We prove the result by induction on k.For k = 1, the bound easily follows from γd ≤ (d + 4)/4.
Suppose now that the result holds for some k ∈ J1, d− 2K, and that we want to show that it holds
for k+1. Notice that we can suppose that d ≥ 3. Define Gd(k) = 1

2 log d log d
d−k . Then for any λ > 0,

Gd(k + λ)−Gd(k) = −1

2
log d log

d− k − λ

d− k
≥ 1

2

λ log d

d− k
.

Taking λ = 1, we see that Gd(k + 1)−Gd(k) ≥ 1
2

log d
d−k .

From the upper bound γd ≤ (d + 4)/4, we obtain:

log Γd(k + 1)− log Γd(k) =
1

2

log γd−k

d− k − 1
≤ 1

2

log(d− k + 4)/4

d− k − 1
.

Now, since the sequence
(

n log((n+4)/4)
n−1

)

n≥2
is increasing, we have:

(d− k) log((d− k + 4)/4)

d− k − 1
≤ d− 1

d− 2
log((d + 3)/4)

= log d +
(d− 1) log((d + 3)/4)− (d− 2) log d

d− 2
≤ log d,

since the last term is a decreasing function of d, which is negative for d = 3. 2

Proof of Lemma 3

We have − log
∏

i≤t δ
−ki log

ki
di = (log δ) ·∑i≤t ki log

ki
di

. Now, note that the function x 7→ x log x is
convex on [0, +∞). This means that for any t ≥ 1, for any a1, . . . , at > 0, and for any λ1, . . . , λt ∈
[0, 1] such that

∑

i≤t λi = 1, we have:

∑

i≤t

λiai log ai ≥





∑

i≤t

λiai



 log





∑

i≤t

λiai



 .

In particular, for λi:=
di

P

i≤t di
and ai:=

ki
di

, we get (after multiplication by
∑

i≤t di):

− log
∏

i≤t

δ
−ki log

ki
di ≥ (log δ) ·





∑

i≤t

ki



 log

(

∑

i≤t ki
∑

i≤t di

)

,

which is exactly − log δ
−(

P

i≤t ki) log

P

i≤t ki
P

i≤t di . 2
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Proof of Lemma 4.

Proof. We start with the first identity. We prove it by induction on k. For k = 1, this is Minkowski’s
bound. Assume it to be true for a given k ≤ d− 2. We are to prove that it holds for k + 1 instead
of k. By applying Minkowski’s bound to the (d − k)-dimensional HKZ-reduced basis b

∗
k+1, . . . , b

∗
d,

we have:

‖b∗k+1‖ ≤
√

γd−k

d−k
d−k−1 · πJk+2,dK. (3)

We can rewrite our induction hypothesis as

π
k+1

k

J1,k+1K · ‖b
∗
k+1‖−

1
k ≤ (Γd(k))

d
k · π

d−k−1
d−k

Jk+2,dK · ‖b
∗
k+1‖

1
d−k ,

or, again, as

π
k+1

k

J1,k+1K ≤ (Γd(k))
d
k · π

d−k−1
d−k

Jk+2,dK · ‖b
∗
k+1‖

d
k(d−k) .

This gives, by using Equation (3):

π
k+1

k

J1,k+1K ≤ (Γd(k))
d
k · √γd−k

d
k(d−k−1) · π

k+1
k

Jk+2,dK = (Γd(k + 1))
d
k · π(k+1)/k

Jk+2,dK .

By raising this last identity to the power k
k+1 , we get

πJ1,k+1K ≤ (Γd(k + 1))
d

k+1 · πJk+2,dK,

which, by induction, yields the first inequality.

The second inequality follows easily from the first one. Indeed, it suffices to raise the first one

to the power k/d, multiply both sides by
(

πJk+1,dK

)(d−k)/d
, and use the identity det L =

(

πJ1,kK

)k ·
(

πJk+1,dK

)d−k
.

Proof of Lemma 5.

First notice that, as a consequence of Lemma 4, we have, for k, l integers, 1 ≤ k ≤ l < d,

πJl+1,dK ≥ Γd−k(l − k)−1 · πJk+1,dK. (4)

Recall that:

π̃[x1,d] =
(

πJbx1c,dK

)λ1 ·
(

πJbx1c+1,dK

)1−λ1 and π̃[x2,d] =
(

πJbx2c,dK

)λ2 ·
(

πJbx2c+1,dK

)1−λ2 ,

with λi = (d−bxic+1)(1−xi+bxic)
d−xi+1 for i ∈ {1, 2}. Notice that since x1 < x2, either bx1c + 1 ≤ bx2c, or

bx1c = bx2c. In the last case, since the function x 7→ (u− x)/(v − x) is decreasing when u < v and
for x < u, we must have λ2 < λ1.

We split the proof in several cases, depending on the respective values of λ1 and λ2.

First case: λ1 ≤ λ2. In that case, we have bx1c+ 1 ≤ bx2c. We define

G := Γd−bx1c+1(bx2c − bx1c)λ1 · Γd−bx1c(bx2c − bx1c − 1)λ2−λ1 · Γd−bx1c(bx2c − bx1c)1−λ2 .
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By using three times Equation (4), we get:

π̃[x2,d] =
(

πJbx2c,dK

)λ2 ·
(

πJbx2c+1,dK

)1−λ2

≥
(

πJbx2c,dK

)λ1 ·
(

πJbx2c,dK

)λ2−λ1 ·
(

πJbx2c+1,dK

)1−λ2

≥ G−1 ·
(

πJbx1c,dK

)λ1 ·
(

πJbx1c+1,dK

)1−λ1 .

Now, Lemma 4 gives that

log G

log
√

d
≤ λ1 log

d− bx1c+ 1

d− bx2c+ 1
+ (λ2 − λ1) log

d− bx1c
d− bx2c+ 1

+ (1− λ2) log
d− bx1c
d− bx2c

,

which, by concavity of the function x 7→ log x, is at most the logarithm of

E(x1, x2) := λ1
d− bx1c+ 1

d− bx2c+ 1
+ (λ2 − λ1)

d− bx1c
d− bx2c+ 1

+ (1− λ2)
d− bx1c
d− bx2c

To complete the proof of this first case, it suffices to prove that E(x1, x2) ≤ fracd− x1d− x2. We
have

E(x1, x2) =
λ1

d− bx2c+ 1
+

d− bx1c
d− x2 + 1

=
d− x1

d− x2
+

λ1

d− bx2c+ 1
− 1− frac(x1)

d− x2 + 1
− x2 − x1

(d− x2)(d− x2 + 1)
,

≤ d− x1

d− x2
+

1

d− x2 + 1

(

λ1 − (1− frac(x1))−
x2 − x1

d− x2

)

=
d− x1

d− x2
+

1

d− x2 + 1

(

(1− frac(x1))frac(x1)

d− x1 + 1
− x2 − x1

d− x2

)

≤ d− x1

d− x2
+

1

d− x2 + 1

(

1− frac(x1)

d− x2
− x2 − x1

d− x2

)

,

from which the result follows at once, since bx1c < bx2c implies that x2 − x1 = bx2c − bx1c +
frac(x2)− frac(x1) ≥ 1− frac(x1).

Second case: λ1 > λ2. Similarly, defining

H = Γd−bx1c+1(bx2c − bx1c)λ2 · Γd−bx1c+1(bx2c − bx1c+ 1)λ1−λ2 · Γd−bx1c(bx2c − bx1c)1−λ1 ,

we obtain

π̃[x2,d] =
(

πJbx2c,dK

)λ2 ·
(

πJbx2c+1,dK

)1−λ2

=
(

πJbx2c,dK

)λ2
(

πJbx2c+1,dK

)λ1−λ2
(

πJbx2c+1,dK

)1−λ1

≥ H−1
(

piJbx1c,dK

)λ1
(

πJbx1c+1,dK

)1−λ1 .

Lemma 4 gives us that:

log H

log
√

d
≤ λ2 log

d− bx1c+ 1

d− bx2c+ 1
+ (λ1 − λ2) log

d− bx1c+ 1

d− bx2c
+ (1− λ1) log

d− bx1c
d− bx2c

.
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By concavity of the function x 7→ log x, the right hand side is at most the logarithm of

λ2
d− bx1c+ 1

d− bx2c+ 1
+ (λ1 − λ2)

d− bx1c+ 1

d− bx2c
+ (1− λ1)

d− bx1c
d− bx2c

= E(x1, x2) +
λ1 − λ2

(d− bx2c)(d− bx2c+ 1)
.

Hence, we just need to prove that:

E′(x1, x2) := E(x1, x2) +
(λ1 − λ2)

(d− bx2c)(d− bx2c+ 1)
≤ d− x1

d− x2
.

Some elementary calculus provides the equalities:

E′(x1, x2) =
d− x1

d− x2
+

λ1

d− bx2c
− 1− frac(x2)

(d− bx2c)(d− x2 + 1)
− 1− frac(x1)

d− x2 + 1
− x2 − x1

(d− x2)(d− x2 + 1)

=
d− x1

d− x2
+

λ1

d− bx2c
− 1− frac(x1)

d− x2
− 1− frac(x2)

(d− bx2c)(d− x2 + 1)
− x2 − bx1c − 1

(d− x2)(d− x2 + 1)

Second case, first sub-case: λ1 > λ2, bx1c < bx2c. In that case,

E′(x1, x2)−
d− x1

d− x2
≤ λ1 − (1− frac(x1))

d− x2
− 1− frac(x2)

(d− bx2c)(d− x2 + 1)
− 1

(d− x2)(d− x2 + 1)

≤ 1− frac(x1)

(d− x2)(d− x1 + 1)
− 1

(d− x2)(d− x2 + 1)

≤ 0

Second case, second sub-case: λ1 > λ2, bx1c = bx2c. In that case, after some rewriting which
can be checked with one’s favourite computer algebra system, one finds that:

E′(x1, x2)−
d− x1

d− x2
=

1

(d− bx1c)(d− x2)

(

(1− frac(x1))(x1 − x2)(d− bx2c)
d− x1 + 1

− frac(x2)(λ1 − λ2)

d− bx1c+ 1

)

≤ 0.

2
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